Nonlinear deformation and localized failure of bacterial streamers in creeping flows

نویسندگان

  • Ishita Biswas
  • Ranajay Ghosh
  • Mohtada Sadrzadeh
  • Aloke Kumar
چکیده

We investigate the failure of bacterial floc mediated streamers in a microfluidic device in a creeping flow regime using both experimental observations and analytical modeling. The quantification of streamer deformation and failure behavior is possible due to the use of 200 nm fluorescent polystyrene beads which firmly embed in the extracellular polymeric substance (EPS) and act as tracers. The streamers, which form soon after the commencement of flow begin to deviate from an apparently quiescent fully formed state in spite of steady background flow and limited mass accretion indicating significant mechanical nonlinearity. This nonlinear behavior shows distinct phases of deformation with mutually different characteristic times and comes to an end with a distinct localized failure of the streamer far from the walls. We investigate this deformation and failure behavior for two separate bacterial strains and develop a simplified but nonlinear analytical model describing the experimentally observed instability phenomena assuming a necking route to instability. Our model leads to a power law relation between the critical strain at failure and the fluid velocity scale exhibiting excellent qualitative and quantitative agreeing with the experimental rupture behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bacterial floc mediated rapid streamer formation in creeping flows

One of the central puzzles concerning the interaction of low Reynolds number fluid transport with bacterial biomass is the formation of filamentous structures called streamers. In this manuscript, we report our discovery of a new kind of low Re bacterial streamers, which appear from pre-formed bacterial flocs. In sharp contrast to the biofilm-mediated streamers, these streamers form over extrem...

متن کامل

Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets

It has been recently reported that in presence of low Reynolds number (Re ≪ 1) transport, preformed bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this work, we explain that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such "viscous liquid" state can be hypot...

متن کامل

Vorticity generation in creeping flow past a magnetic obstacle.

The generation of vorticity in the two-dimensional creeping flow of an incompressible, electrically conducting viscous fluid past a localized magnetic field distribution is analyzed under the low magnetic Reynolds number approximation. It is shown that the Lorentz force produced by the interaction of the induced electric currents with the nonuniform magnetic field acts as an obstacle for the fl...

متن کامل

Scaling laws of creep rupture of fiber bundles.

We study the creep rupture of fiber composites in the framework of fiber bundle models. Two fiber bundle models are introduced based on different microscopic mechanisms responsible for the macroscopic creep behavior. Analytical and numerical calculations show that above a critical load the deformation of the creeping system monotonically increases in time resulting in global failure at a finite...

متن کامل

Creeping sparks - stroboscopic imaging of surface streamers

In order to gain a better understanding of how to prevent sparks creeping along dielectric surfaces the most common cause of failure in high voltage devices we have studied the propagation of the preceding streamers along dielectric surfaces. We applied a voltage pulse to a needle a small distance above a dielectric sample a thin vertically positioned plate in low-pressure air, and imaged the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016